软件信息网 移动端开发 消息队列介绍

消息队列介绍

1.介绍

消息队列就是基础数据结构中的 "先进先出" 的一种数据机构。想一下,生活中买东西需要排队,先排队的人先买消费,就是典型的 "先进先出"。

image

# 扩展
redis: 可以作为简单的消息队列
celery: 本事就是基于消息队列进行的封装。

2.MQ解决了什么问题

MQ是一直存在,不过随着微服务架构的流行,成了解决微服务和微服务之间通信的常用工具。
# 扩展
1.两个服务之间调用的方式:
	1.restful七层协议oss(http协议)
	2.rpc tcp socket层(远程过程调用)
2.不管是使用restful还是rpc,都涉及到使用同步还是异步:
	1.异步: client使用rpc和server交互,client使用异步,不管有没有执行成功,就不停的异步的提交数据,数据在server消息队列排着队,等待着消费。
1.应用的解耦
1.以电商应用为例,应用中有订单系统,库存系统,物流系统,支付系统。用户创建订单后,如果耦合调用库存系统,物流系统,支付系统,任何一个子系统出现了故障,都会造成下单操作异常。
2.当转变成基于队列的方式后,系统间调用的问题会减少很多,比如物流系统因为发生故障,需要几分钟来修复。在这几分钟的时间里,物流系统要处理的内存被缓存在消息队列中,用户的下单操作可以正常完成。当物流系统恢复后,继续处理订单信息即可,订单用户感受不到物流系统的故障。提升系统的可用性。

image

2.流量削峰
1.举个列子,如果订单系统最多能处理一万次订单,这个处理能力应付正常时段的下单时绰绰有余,正常时段我们下单一秒后就能返回结果。但是在高峰期,如果有两万次下单操作系统是处理不了的,只能限制订单超过一万后不允许用户下单。
2.使用消息队列做缓存,我们可以取消这个限制,把一秒内下的订单分散成一段时间来处理,这时有些用户可能在下单十几秒后才能收到下单成功的操作,但是比不能下单的体验要好。

# 结:
1.通常下比如有两万订单,这时我们server肯定消费不过来,我们将两万丢到消息队列中,进行消费即可。 --- 就叫流量消峰 = 如: 双十一,消息队列 多消费
3.消息分发(发布订阅: 观察者模式)
多个服务对数据感兴趣,只需要监听同一类消息即可处理。

image

列如A产生数据,B对数据感兴趣。如果没有消息队列A每次处理完需要调用一下B服务。过了一段时间C对数据也感兴趣,A就需要改代码,调用B服务,调用C服务。只要有服务需要,A服务都要改动代码。很不方便。
xxxxxxxxxx 有了消息队列后,A只管发送一次消息,B对消息感兴趣,只需要监听消息。C感兴趣,C也去监听消息。A服务作为基础服务完全不需要有改动。
4.异步消息(celery就是对消息队列的封装)
xxxxxxxxxx 有些服务间调用是异步的:    1.例如A调用B,B需要花费很长时间执行,但是A需要知道B什么时候可以执行完,以前一般有两种方式,A过了一段时间去调用B的查询api是否完成。    2.或者A提供一个callback api,B执行完之后调用api通知A服务。这两种方式都不是很优雅。python

image

1.使用消息总线,可以很方便解决这个问题,A调用B服务后,只需要监听B处理完成的消息,当B处理完成后,会发送一条消息给MQ,MQ会将此消息转发给A服务。
2.这样A服务既不用循环调用B的查询api,也不用提供callback api。同样B服务也不用做这些操作。A服务还能及时的得到异步处理成功的消息。

3.常见消息队列及比较

copy
xxxxxxxxxx  RabbitMQ: 支持持久化,断电后,重启,数据是不会丢的。    1. 吞吐量小: 几百万都是没问题的,消息确认: 我告诉你,我消费完了,你在删    2.应用场景: 订单,对消息可靠性有要求,就用它     Kafka: 吞吐量高,注重高吞吐量,不注重消息的可靠性    1.你拿走就没了,消费过程崩了,就没了。    2.应用场景,数据量特别大。    # 结论:    1.Kafka在于分布式架构,RabbitMQ基于AMQP协议来实现,RocketMQ/思路来源于Kafka,改成了主从结构,在事务性可靠性方面做了优化。    2.广泛来说,电商,金融等对事物性要求很高的,可以考虑RabbitMQ,对性能要求或吞吐量高的可考虑Kafka。python

作者: 软件定制开发

李铁牛,一直致力于企业客户软件定制开发,计算机专业毕业后,一直从事于互联网产品开发到现在。系统开发,系统源码:15889726201
上一篇
下一篇
联系我们

联系我们

15889726201

在线咨询: QQ交谈

邮箱: 187395037@qq.com

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部